Studies of different kernel functions in nuclear mass predictions with kernel ridge regression

نویسندگان

چکیده

The kernel ridge regression (KRR) approach has been successfully applied in nuclear mass predictions. Kernel function plays an important role the KRR approach. In this work, performances of different functions predictions are carefully explored. illustrated by comparing accuracies describing experimentally known nuclei and extrapolation abilities. It is found that approaches with most adopted kernels can reach same level around 195 keV, performance Gaussian slightly better than other ones validation for whole range distances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Ridge Regression via Partitioning

In this paper, we investigate a divide and conquer approach to Kernel Ridge Regression (KRR). Given n samples, the division step involves separating the points based on some underlying disjoint partition of the input space (possibly via clustering), and then computing a KRR estimate for each partition. The conquering step is simple: for each partition, we only consider its own local estimate fo...

متن کامل

Estimating Predictive Variances with Kernel Ridge Regression

In many regression tasks, in addition to an accurate estimate of the conditional mean of the target distribution, an indication of the predictive uncertainty is also required. There are two principal sources of this uncertainty: the noise process contaminating the data and the uncertainty in estimating the model parameters based on a limited sample of training data. Both of them can be summaris...

متن کامل

Modelling Issues in Kernel Ridge Regression

Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kern...

متن کامل

An Identity for Kernel Ridge Regression

This paper derives an identity connecting the square loss of ridge regression in on-line mode with the loss of the retrospectively best regressor. Some corollaries about the properties of the cumulative loss of on-line ridge regression are also obtained.

متن کامل

Sparse Kernel Ridge Regression Using Backward Deletion

Based on the feature map principle, Sparse Kernel Ridge Regression (SKRR) model is proposed. SKRR obtains the sparseness by backward deletion feature selection procedure that recursively removes the feature with the smallest leave-one-out score until the stop criterion is satisfied. Besides good generalization performance, the most compelling property of SKRR is rather sparse, and moreover, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Physics

سال: 2023

ISSN: ['2296-424X']

DOI: https://doi.org/10.3389/fphy.2023.1061042